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1 Simplex Method

1.1 Problem Description

It’s a common problem for factories to figure out how to arrange the
production with different technology consumption with limited resources, so
that the final profit is maximized.In mathematical optimization, Dantzig ’s
Simplex algorithm is a popular algorithm for such linear programming.
Simply, we could give a simple example of such LP problem as (1).

max z = x1 + x2

s.t.

!
"

#

2x1 + x2 ≤ 12
x1 + 2x2 ≤ 9
x1, x2 ≥ 0

(1)

As the specific LP problem depicted above, we could solve this problem
by Graphical method. Reminding the procedure of the Graphical method, we
always directly draw the plot of each constraint considered as an equation as
Figure.1 shown.

Figure 1: The plot of the constraint in (1).

In fact, when solving the LP problem, we always add some slack variables
to change this non-equational constraint into equational constraint. And this
is part of the standard of solving LP problem. The LP problem could be
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constructed as a standard form like (2).

max z = c1x1 + c2x2 + ...+ cnxn

s.t.

!
$$$$$"

$$$$$#

a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2

...
am1x1 + am2x2 + ...+ amnxn = bm
x1, x2, ..., xn ≥ 0

(2)

Where the z is the profit in total, the ci(i = 1, 2, ..., p) are the value coef-
ficients, xi(i = 1, 2, ..., p) are the number of production, aij(i = 1, 2, ...,m; j =
1, 2, ..., p) are the technical coefficients and bi(i = 1, 2, ...,m) are the limita-
tion of resource.
Alternatively, we could transform the canonical form into more specific form
as (3) or vector form as (4).

max z = cTx

s.t. Ax = b

x ≥ 0

(3)

Where the z is the profit in total, the cT = (c1, c2, ..., cn)
T are the value

coefficients, x = (x1, x2, ..., xn) are the number of production, A is a p × n
matrix representing the technical coefficients and b = (b1, b1, ..., bn) are the
limitation of resource.

max
n%

i=1

cixi = z

s.t.
& 'n

i=1 xipi = b
xi ≥ 0, i = 1, 2, ..., n

(4)

1.2 Idea and Solution

Reminding the solving process of LP problem above, we could trans-
form these constraint into hyperplane, and then search for the optimal so-
lution trough panning the objective function in the space enclosed by the
hyperplane(In fact, the simplex is a convex package of N + 1 vertices in N
dimensions convex packets of vertices). Through such example of LP prob-
lem, you’ll find that he optimal solution to the LP problem always located on
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a vertex. In other words, we could always find the optimal solution by iterat-
ing over all vertices. Actually, we have some faster and effective methods to
find the optimal solution rather than iteration over all e.g. simplex method,
interior point method, ellip-soid method and Karmarkar’s algorithm. Here,
for Simplex method, starting from an initial vertex, iterate to find the adja-
cent better vertex until the optimal solution is found as Figure.2.

Figure 2: The idea of Simplex method.

Now, we have realized the idea of Simple method. Then, we could take
a further step to the definition of the solving process. The matrix A is the
coefficient matrix of constraint as know as technical coefficient matrix. Ac-
cording to the definition of LP problem, we know that the coefficient matrix
should be full rank in rows, which means Rank(A) = m in a m× n matrix.
Therefore, we could extract m columns to form a matrix of m × m named
Basis denoted by B. And, the matrix of m×(n−m) consisted of left columns
named Non-basis denoted by N . Respectively, the corresponding variables
called Basic variables and Non-basic variables.

A = [B,N ] =

(

)))*

a11 · · · a1m a1,m+1 · · · a1,n
a21 · · · a2m a2,m+1 · · · a2,n
... . . . ...

... . . . ...
am1 · · · amm am,m+1 · · · am,n

+

,,,-

After changing the order of columns without affecting the constraints,
we could transform B into an identity matrix using elementary transforma-
tion on (A|b). By doing so, it’s easy for us to calculate the solution of this
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set of equations through making all the Non-basic variables equal to zero
and we called the x(0) = (x1, · · · , xm, 0, · · · , 0)T as Basic solution. However,
it not satisfy the constraints completely and just make the equation con-
straints satisfied cause it’s passible to exist non-negative variables. Hence,
if x1, x2, · · · , xm ≥ 0, the solution satisfy the constraints completely and we
called it the Basic feasible solution.

Ax = b

[B N ]x = b

BxB +NxN = b

Let xN = (0, · · · , 0)T , we have

BxB = b

∵ Rank(Bx) = m

∴ xB = B−1b

xB = (x1, x2, · · · , xm)
T

x(0) = (x1, · · · , xm, 0, · · · , 0)T

Where x(0) is the basic solution, and if x1, x2, · · · , xm ≥ 0, then x(0)

becomes the basic feasible solution.
In fact, the search space of Simplex method is the space of Basic feasible

solution, which means we could find the optimal solution from these basic fea-
sible solutions if it exists.The connection among feasible solution, infeasible
solution, basic solution and basic feasible solution is shown as Figure.3.

Figure 3: The connection of different solution.
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1.3 Derivation Process

Perhaps, we could cauculate the basic feasible solutions and literate them
to find the optimal solution. However, two questions were come up with, how
to search and when to stop.Simplex method is to calculate the adjacent ver-
texes and choose more optimal vertex until objective function stop increasing.
And then, we’ll show the derivation process.

1.3.1 Basis Changing

For the first question, our target is to find out a better adjacent ver-
tex.Assume that A = [p1, p2, · · · , pm, pm+1, · · · , pj, · · · , pn], B = [p1, p2, · · · , pm],
N = [pm+1, · · · , pj, · · · , pn], xN = (xm+1, xm+2, · · · , xn)

T = (0, 0, · · · , 0)T .

pj =
m%

i=1

aijpi (5)

pj −
m%

i=1

aijpi = 0 (6)

θ(pj −
m%

i=1

aijpi) = 0 (θ > 0) (7)

With equation in (4) and (9), we have
&

θ(pj −
'm

i=1 aijpi) = 0'm
i=1 x

(0)
i pi = b

(8)

m%

i=1

(x
(0)
i − θaij)pi + θpj = b (9)

m%

i=1

x
(0)
i pi +

n%

j=m+1

xjpj = b (10)

Because of xN = (x
(0)
m+1, xm+2, · · · , xn)

T = (0, 0, · · · , 0)T , we have

m%

i=1

x
(0)
i pi = b (11)

Which means that the the original equation constraints (13) could be
represented by new coefficients and variables like (11). Specifically, the initial
vertex could change into other adjacent vertex after changing only one pair
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of basis. Although the original basic feasible solution x(0) becomes other
solution x(1), we need to make it satisfy the basic and feasible conditions so
that it could be one of the vertexes in basic feasible space.

x(1) = (x
(0)
1 − θa1j, x

(0)
2 − θa2j, · · · , x(0)

m − θamj, 0, · · · , θ, · · · , 0)T

basic and feasible
&

p1, · · · , pj, · · · , pm → linearly independent
x
(0)
i − θaij ≥ 0

(12)

Let’s prove the feasible condition first. As previously defined, we have
x
(0)
i ≥ 0 and θ > 0, so we’ll discuss the condition of aij.

x
(0)
i − θaij ≥ 0 (13)

(1) When aij ≤ 0, the inequality (13) holds constantly and the x(1) could
be +∞ named Boundless Solutions.

(2) When aij > 0, we have

x
(0)
i

aij
≥ θ (14)

If we want the inequity (14) to be held constantly, then we have

θ = min

.
x
(0)
i

aij

////aij > 0

0
=

x
(0)
r

arj
(15)

Here, we assume that the r-th one is the minimal one.
Above all, if we want make (13) hold constantly, we just need satisfy

(15), which achieves the feasible condition.
On the other hand, to prove the new solution x(1) is a basic solution, we

just need to prove the responding coefficients are basis. In fact, there are a
lot of approach to prove it. Here, we are going to prove the new set of vectors
are linearly independent.

∵ |p1, p2, · · · , pr−1, pr, pr+1, · · · , pm| ∕= 0 (16)

pj =
m%

i=1

aijpi (17)
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and because of (15), we know that

arj ∕= 0 (18)

∴ [p1, p2, · · · , pr−1, pj, pr+1, · · · , pm] are linearly independent (19)

Therefore, we prove that the new basis and it’s corresponding solution satis-
fied the basic and feasible condition.

B = [p1, p2, · · · , pr−1, pj, pr+1, · · · , pm]

x(1) = (x
(0)
1 − θa1j, x

(0)
2 − θa2j, · · · , x(0)

m − θamj, 0, · · · , θ, · · · , 0)T

1.3.2 Optimal Test

It’s much easier for us to handle the second question after solving the first
one. For the question when to stop, the objective function gives everything.
Our optimal target is the maximize the profit z and it’s initiative to consider
the change of increment when the current vertex jumps to the next vertex.
Then, we’ll prove and show the detail about it.
As we proved above, we have find the new adjacent vertex x(1) by changing
the basic based on x(0).

x(0) = (x1, x2, · · · , xm, 0, · · · , 0)T

→ x(1) = (x
(0)
1 − θa1j, x

(0)
2 − θa2j, · · · , x(0)

m − θamj, 0, · · · , θ, · · · , 0)T

Looking back the objective function, we have

z =
m%

i=1

cixi (20)

Take x(0) and x(1) into (20) respectively, we have

z(0) =
m%

i=1

cix
0
i (21)
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z(1) =
m%

i=1

cix
1
i

=
m%

i=1

ci(x
1
i − θaij) + cjθ

=
m%

i=1

cix
1
i + θ(cj −

m%

i=1

ciaij)

= z(0) + θ(cj −
m%

i=1

ciaij)

(22)

The θ(cj −
'm

i=1 ciaij) is the increment of basic changing every time,
which we called optimality test denoted as δj. And we could give the general
form as follow.

z(k+1) = z(k) + θ(cj −
m%

i=1

ciaij)

δj = cj −
m%

i=1

ciaij

(23)

Here, we give the solutions with different δj.
(1) If δj < 0, the LP problem has only optimal solution x(k) and the corre-
sponding optimal value z(k).
(2) If δj = 0, the the LP problem has infinite number of optimal solution,
which are the points on the line between x(k) and x(k+1).
(3) If δj > 0, the current solution x(k+1) is not the optimal solution.
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